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Abstract—Carp is a highly invasive, bottom-feeding fish
which pollutes and dominates lakes by releasing harmful
nutrients. Recently, environmental scientists started studying
carp behavior by tagging the fish with radio-emitters. The
radio-tagged fish are tracked manually using GPS and a
directional antenna. We have been working on developing a
novel robotic sensor system in which the human effort is
replaced by autonomous robots to find and track carp. During
the summer months, we use robotic boats whereas in the winter,
mobile robots track the fish on frozen lakes.
In this extended abstract, we report the current state of

our system including system architecture, coverage and active
tracking algorithms. We also present results from field experi-
ments including coverage experiments in which our boat travels
2.4 km in Lake Keller in Minnesota.

I. INTRODUCTION
Invasive fish such as the common carp pose a major threat

to the ecological integrity freshwater ecosystems around the
world. Presently, the only way to control these fish is through
the use of non-specific toxins which are expensive, ecolog-
ically damaging, and impractical in large rivers and lakes.
Recent studies in small lakes have established that some of
these fishes aggregate densely at certain times and places
and can be controlled by targeting these aggregations using
netting. Therefore, biologists started using a new technology
based on tracking radio-tagged carp to accurately predict the
presence of large carp populations.
Unfortunately, carp aggregations are unpredictable. Man-

ually locating tagged fish in large, turbid bodies of water
remains a difficult task. Our goal is to replace this man-
ual effort with robots. Toward this goal, we developed an
autonomous robotic boat (Figure 1(a)) capable of localizing
tagged fish in lakes and a field robot (Figure 1(b)) performing
the same task on frozen lakes.
In this work, we build on our previous system [1] and

present the following improvements: (1) Coverage:We have
recently developed a new coverage algorithm to detect the
presence of fish. The algorithm takes regions that are likely
to contain fish as input and computes a path to cover these
regions. This allows for incorporating scientists’ domain
knowledge. (2) Active Localization: After detecting the fish,
the goal is to accurately estimate its location. We use multiple
measurements taken at various locations for estimation. The
problem we address is how to choose measurement locations
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in an online fashion so as to accurately localize the fish with
a small number of measurements. We report recent results
on active localization.
We also report results from field experiments for both the

problems. We begin with the coverage problem.

(a) Robotic boat at during coverage ex-
periments at Lake Keller, MN.

(b) Robot (with tracking equip-
ment and antenna) on frozen
Lake Casey, MN.

Fig. 1. Robotic system for monitoring radio-tagged carp during field trials.

II. SEARCH AND COVERAGE

In this section, we present our coverage algorithm for
finding fish. We say that location x on the lake is covered
if the boat moves to a location y from where the tag on
the fish when located at x can be heard. While the fish
move significantly throughout the day, they are expected to
remain within a certain area for shorter periods of time. If
we assume that a fish is approximately stationary during the
search phase, the searching task reduces to a coverage task:
find the shortest trajectory which ensures that all possible
locations of the fish are covered.
We can speed-up the coverage task by incorporating

domain knowledge. Suppose we are given a set of regions
which are likely to contain the fish. For example, these can
be areas rich in vegetation. We assume that these regions are
connected in the sense that there is a path between any two
points. We model the regional contiguity property as follows:
When the robot visits a region, it must cover it completely

before visiting another region.
With the regional contiguity requirement, the coverage

problem can be defined as follows: Given a set of connected
regions R = {R1, R2, . . . , Rn}, find a minimum length tour
with the regional contiguity property which covers every
point in each region Ri ∈ R.
We propose an approach composed of two steps: First,

we compute an α approximation tour τR that visits all the
regions in R. We say that region Ri is visited if any point in
Ri is visited by the tour. The tour, τR, imposes an ordering on
the regions. Next, we compute a β approximation coverage



Fig. 2. Covering a rectangle with given entry and exit points.

tour CRi
for each region Ri ∈ R independently. The final

tour τ is constructed by adding the coverage tours of each
region to τR. We prove that imposing regional contiguity
costs at most a factor (α+β) deviation from the unrestricted
optimal solution.
We now present algorithms for the two components of

the algorithm: Computing a tour that visits the regions and
covering the regions.

A. Visiting the regions: TSPN and the Zookeeper Problems
The computation of the tour τR depends on the geometric

properties of the regions. If the regions are convex polygons
touching the boundary of a (simply-connected) lake then the
tour can be computed optimally by computing the so-called
zookeeper’s route [2]. In this case α = 1. If the regions
are arbitrarily placed, we can use algorithms for TSP with
neighborhoods (TSPN) such as [3].
Most geometric instances of the TSPN problem are NP-

Hard. In our application, it is reasonable to model the lake as
a simply-connected region. Further, areas of interest where
the fish may lie are usually close to the shore because
of vegetation and oxygen levels. This special instance of
TSPN known as the zoo-keeper problem can be solved in
polynomial time due to the following lemma.
Lemma 1 ( [2]): Let R = {R1, R2, . . . , Ri, . . . , Rn} be a

set of convex regions located along the perimeter of a simply
connected polygon P . There exists an optimal solution for
visiting the regions in R which visits them in the order they
appear along the boundary of P .
Once the ordering of the regions is known, the shortest tour

visiting all regions can be calculated which yields entry and
exit points for each region. To turn these tours into coverage
paths, we need a way to cover a region with given entry and
exit points. The computation of these paths is presented next.

B. Coverage
In the second step of our algorithm, a coverage tour for

each region is computed. In our application, we represent
regions with rectangles with arbitrary orientations since they
are easy to specify on one hand and general enough for
practical purposes on the other.
The algorithm presented in Section II-A generates an entry

and exit point for each region. Our coverage problem is
to travel through every vertex in a given rectangular graph
with a given starting and ending point. The following lemma
shows that we can cover the entire rectangle efficiently even
with this constraint.
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Fig. 3. Complete TSP path. Using the same regions the TSPN graphs show
the entry and exit points for the region along with the the paths between
the regions. The coverage paths are not shown for clarity.

TSP TPSN Coverage Total
Environment 1 8,585 500 4,970 5,470
Environment 2 11,361 600 5,940 6,540
Environment 3 2,522.8 302.2 1,450 1,752.2
Environment 4 3,278.1 371.44 1,825 2,196.4
Environment 5 (Fig. 3) 11,856 682.84 4,950 5,632.8

TABLE I
A COMPARISON OF THE TSP PATH VS. COMBINED TSPN/COVERAGE

PATH FOR DIFFERENT INPUT SETUPS.

Lemma 2: Let R be a rectangle with a grid imposed on
top. Let s and t be two grid points on the boundary specified
as entry and exit points. There exists a tour T which starts at
s, visits every grid point and exits at t such that the length of
T is at most twice the optimal tour which visits every point.

Proof: Given start and end points s and t respectively,
we construct a coverage path as shown in Figure 2. This
path consists of three parts: an optimal part that covers the
rectangle with length equal to that of the OPT , and parts
that connect s and t to the start and end points of this optimal
part. We can prove that the two connecting parts are non-
overlapping and giving us a 2-approximation. The details of
the proof are deferred for the full paper.
We also show that this analysis is tight: there are instances
where we cover the region twice when s and t are fixed.
We now evaluate our proposed algorithms through simu-

lations and field experiments for covering the lake.

C. Simulations and Field Experiments

We first compare the performance of our algorithms with
the standard TSP solution. The TSP solution uses all grid
points to be covered independent of the regions. For comput-
ing the TSP solution, we use the heuristic by Christofides [4]
which yields a 3/2-approximation. We ran the two algorithms
for the environments given in Figure 3. The results are
reported in Table I, whose first column is the length of the
TSP tour and the last column is the length of our solution.
As these results show, in addition to enforcing re-

gional contiguity, our algorithm is more efficient than the
Christofides heuristic in these instances. It seems that the
matching component of the Christofides heuristic sometimes
yields long tours. For example, in Figure 3, the TSP path is
almost twice as long as our solution.



Fig. 4. The GPS trace of the path taken by the boat during the
experiment. The trails shows that the boat covered all four regions by
visiting all the waypoints robustly. Also the trace suggest that the navigation
algorithm negotiated well with the drift caused by wind. The boat traveled
approximately 2.5 km in 36 minutes of the run.

We conducted field experiments in Lake Keller, Maple-
wood, MN to test the coverage algorithm and the navigation
performance of the system. The size of the lake is approxi-
mately 900m × 350m.
We fixed four regions of interest in the lake. The di-

mension of the four regions are approximately 71m× 23m,
100m × 70m, 118m × 100m and 93m × 83m with a total
area of 28, 150m2. During the experiment the boat traveled
approximately 2.5 kilometers in 36 minutes until all the
waypoints were covered Figure 4 shows the boat’s path.
From the experiment we conclude that the coverage algo-

rithm proposed in this paper is useful for real applications.
The experiment also demonstrates that our robotic system
is capable of robustly navigating using waypoints for long
periods of time.
Using the above algorithm, we can efficiently search the

lake for stationary fish. However, the radio antenna has a
large range (about 30m) and we get only coarse estimate for
the fish. To accurately localize the fish, we must combine
multiple measurements. The following section proposes three
strategies to obtain these measurement locations so that the
resulting uncertainty in fish is minimized.

III. ACTIVE LOCALIZATION
We first describe how we obtain bearing measurements

from the radio antenna. Then, we propose three active
localization strategies followed by their evaluation through
simulations and field experiments.

A. Measurement Model
The radio antenna used to detect the tag is direction

sensitive: the signal strength output from the antenna depends
on the relative angle between antenna and the tag. Hence,
we take a coarse sampling of signal strength by rotating the
antenna in steps of 15◦. We can then fit sine waves and third-
degree polynomials using least squares, estimate the maxima
accordingly (Figure 5).
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Fig. 5. A coarse sampling (signal strength versus bearing) and various
least-squares fitting. RANSAC estimation of a cubic polynomial typically
provided the best estimates. The true bearing is 15◦.

This maxima gives us a bearing measurement towards the
target. Our objective is to estimate the location (xf , yf )
of the fish using these bearing measurements. We use
an Extended Kalman Filter with the combined robot and
target state X(t) = (xr, yr, θr, xf , yf ) to be estimated.
The onboard GPS and compass measurements are used to
perform EKF updates for the robot state, while bearing
measurements are used to update the entire state. Since the
bearing measurement function is a non-linear equation, we
linearize the measurement about the current state estimate.
The resulting uncertainty (as show by the determinant of
state covariance) depends on the locations from where the
measurements were obtained. Hence, we can optimize these
measurement locations to minimize the final uncertainty.
The underlying telemetry technology used by the fisheries

researchers introduces another constraint: each tag emits a
signal at a dedicated frequency once every second. Since
each bearing measurement requires sampling the antenna
in multiple directions, we restrict the total measurements
to k discrete locations as opposed to obtaining continuous
measurements.
For the discussion that follows next, we assume that the

initial fish location and covariance estimates are known,
propose three strategies for optimization and evaluate them
with simulations and field experiments, then discuss the
initialization procedure at the end of the section.

B. Active Localization
1) Cramer-Rao Lower Bound: The Cramer-Rao lower

bound for an unbiased estimator X̂ of state X is a lower
bound on the estimation error covariance matrix Pk and is
given as the inverse of the Fisher Information Matrix (FIM)
I . For k bearing measurements with zero-mean Gaussian
noise, determinant of I is inversely proportional to the square
of the area of the 1-σ uncertainty ellipse and can be expressed
as,

|I| =
1

σ4

k
∑

i=1

k
∑

j=1

[

sin(θi − θj)

didj

]2

. (1)

where ∆xi = (xr(i) − xt), ∆yi = (yr(i) − yt), and
d2

i = ∆x2
i + ∆y2

i . Here, (xr(i), yr(i)) is the location of



the robot for the ith measurement, and (xt, yt) is the true
target location.
To compute the k locations, we impose a grid about the

current position of the robot of size n×n. The total number
of candidate points for measurement locations are n2. Hence,
to compute the k measurement locations, we consider each
of the C(n2, k) combinations as a candidate trajectory and
compute the FIM given by 1.
2) Greedy: Instead of computing a fixed path for the

k measurements, we can instead use a greedy strategy
which picks the next measurement location based on the
current estimate and uncertainty of the target. Given the
current robot position and target position, Greedy looks at
all neighboring locations of the robot. At every location,
we simulate all candidate measurements (e.g. by uniformly
picking s samples between 0 to 360◦). Using the current state
and covariance, we can estimate the posterior covariance by
simulating an EKF update using each of these candidate
measurements. Thus, for every neighboring location, we will
have s posterior covariances. Greedy then picks the candidate
location where the maximum determinant of the s posteriors
is minimum. This ensures best worst-case uncertainty for
the target’s position in a greedy fashion. Instead of the best
worst-case uncertainty, we can choose some other heuristic
for the greedy.
3) Enumeration tree: We extend the objective function of

Greedy here, to minimize the worst-case uncertainty obtained
by the EKF after k measurements. We use a min-max tree
to achieve this objective.
The tree is built by assigning each adjacent measurement

location to an action node, and the corresponding measure-
ments to bearing nodes. We recursively define the uncertainty
of the actions and bearings and build the tree to depth
2k, which would correspond to the k desired measurement
locations and k measurements. Each bearing node holds
a worst-case estimate of the measurement uncertainty, as
calculated by the EKF propagation.
Since we use discrete measurement samples while building

the tree, we need to find that child node which is closest
to the current measurement. As there is some uncertainty
associated with the position of the robot itself, we instead
use the Bhattacharya Distance to find that child node, whose
posterior covariance is closest to the current robot covariance
(after the measurement update). The robot then repeats the
above steps until it reaches the leaf nodes (corresponding to
the kth measurement location).
In each of the three strategies proposed above, we assume

initial estimates for the fish position and covariance were
known. We use the following lemma to pick the first two
bearing measurement locations before beginning the strate-
gies.
Lemma 3: Let rmin and rmax be the minimum and

maximum sensing range of the sensor. Assume w.l.o.g
the first measurement taken from the origin is along the
X-axis. Then, if the second measurement is taken from
( rmax+rmin

2
,± rmax−rmin

2
), the worst-case uncertainty in the

target’s position after two measurements is minimized.

C. Simulations and Experiments
We ran 100 random trials for each strategy using the

same initial conditions, target locations, and random seed to
generate measurement noise. The result of the simulations
is presented in Table II, and the corresponding histograms
of final error and determinant of the final covariance matrix
are shown in Figures 6(a) and 6(b) respectively. The outliers
with large error resulted from poor initial estimates.

TABLE II
SIMULATION RESULTS FOR 100 TRIALS

Method
Mean final Mean final

error uncertainty

Enumeration tree 5.7275m 48.36

Greedy 5.9809m 40.59

FIM 6.2975m 54.81

The two best closed-loop (online) strategies, Enumeration
tree and Greedy were then evaluated in field experiments
using the Husky and tracking equipment (Figure 1(b)). Two
results are shown in Figures 6(c) and 6(d). In both plots
the robot’s mean estimated positions are labeled by green
circles, while estimates of fish locations are blue marks.
The rest of the results are presented in Table III. Similar
to the simulation results, we can see that the Enumeration
tree performs better than the Greedy strategy.

TABLE III
EXPERIMENTAL RESULTS WITH DEPTH 2

Method Final error Final uncertainty

Enumeration Tree
0.97 3.53
3.32 8.57
5.35 6.04

Greedy
3.21 20.52
3.29 11.93
8.65 11.34

From the results we observe that both the mean final
error and final uncertainty (determinant) is better for the
Enumeration Tree, where as the FIM strategy performs the
worst of the three. This result is not surprising, for two main
reasons: (1) Since the true target location is unknown, we
compute the FIM using the initial estimate of the target’s
location. (2) The FIM strategy computes locations which
minimize the lower bound on the final uncertainty of an
“efficient estimator”. Since the Extended Kalman Filter is not
an efficient filter, there is no guarantee that it would achieve
this lower bound. On the other hand, the Enumeration tree
and the Greedy actually compute the covariance of the EKF
estimator and pick the location which would minimize its
determinant.

IV. CONCLUSION
In this paper, we focused on a novel application in which a

robotic boat equipped with a directional antenna searches for
radio-tagged invasive fish and picks measurement locations
to precisely localize the fish. We presented a new coverage
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Fig. 6. Simulations (a) & (b): We conducted 100 trials with k = 3 for each strategy. The mean final error for FIM, Enumeration tree and Greedy was
6.30m, 5.73m and 5.98m respectively, and determinant of final covariance was 48.36, 40.59 and 54.81 respectively. Experiments (c) & (d): .The true
location of the tag is marked by a star. The initial estimate along with estimates after first and second measurement is shown with 1-σ bounds in blue.
The measurement locations are shown in green.

algorithm with regional contiguity properties. After present-
ing theoretical results on the performance of the algorithm,
we compared it with a standard TSP solution. In field
experiments, we showed that the boat can cover large areas
efficiently using our algorithm. For the localization problem,
we proposed three strategies, compared them in simulations
and reported results from field experiments which show that
our system is capable of localizing the target within a meter
of the true location.
There are a number of directions we have identified

for future work. Since the fish move very little for long
periods of time in the winter, in our algorithms we make the
assumption that the target is stationary. To handle violations
of this assumption, we are working on strategies to localize
moving fish. We are also planning to acquire additional
boats. Having multiple robots is useful because robots can
localize the fish as well as each other more accurately. New
algorithms for multi-robot coordination are being developed
and will be tested on the field.
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